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ABSTRACT

The large-scale coherent motion associated with turbulent bursting
in a boundary layer is studied wi th the aid of an inviscid model. The
space-time evoluti on of a aisturbance of large horizontal dimensions
compared to the wall layer thickness is analyzed under the assumption
that the mean flow is parallel . The initial velocity field is assumed to
be set up by the action of the turbulent stresses produced by a patch of
secondary instablity . For short and moderate times, the effects of vis-
cosity and pressure are smal l , and the evolution of the disturbance is
conveniently studied with the aid of Lagrangian techniques. The model is
able to reproduce qualitatively many of the observed features of the
bursting motion such as the formation of longitudinal streaks, the rapid
acceleration after initiation of bursting, ana the strong y-coherence of
the u-fluctuations . In particular , the model demonstrates how action by
the mean shear makes the disturbance eventually evolve into a thin i nter-

> nal shear layer, thus making possible the appearance of a new region of
inflexional instability and hence burst regeneration-downstream of the

~~ origina l burst.

. 1. INTRODUCTION

The discovery of recent years that turbulence in the wall region of
a boundary layer is highly intermittent and possesses a quasiperiodic

~~~ and fairly distinct “bursty ” structure (see Frenkiel et al . 1977 for a
number of recent papers on this subject) has pointed to the necessity of
analyzing in depth the dynamical processes involved in the generation of
turbulent fluctuations in this region. This requires the adoption of a
deterministic rather than a statistical approach since the usual statis—

E~~Th~ JTICW STM~~~~T A



¶‘
~ ~~~~

tical methods are not suitable for dealing with such highly intermittent
processes. because the flows under consideration are extremely compli-
cated undeady three-dimensional ones dominated by strong nonlinearity
and rotation , the development of a successful theory necessitates a very
careful choi ce of a theoreti cal model , one that it is simp le enough to
analyze, yet incorporates the major dynamical effects. Early such ef-
forts emphasizing different aspects of the dynamics were those of Theo—
dorsen (1952), Einstein & Li (1956) and Sternberg (1965).

Si nce turbulence may i n some sense be regarded as a man ifestation of
flow instabilit ies, it is of considerable theoretical interest to try
to relate the dynami cal processes in the fully developed turbulent flow
to those studied in hydrodynamic stability theory. This approach (Lan—
dahi , 1967, i3ark, 1975) has proven partially successful in explain ing
some of the observed statistical properties of fluctuating pressures
and velocities in terms of the propagation characteristi cs of linear
waves. Later findings (Landahi, 1975, 1977) indicate , however, that
other types of disturbances besides waves of the Tollmien-Schlichting
type must be incorporated in order to model properly the fluctuati on
field. On basis of a two—scale model (first proposed in Landahl , 1973),
in whi ch the ma i n non l inear interacti on was assumed to occur through a
coupl i ng between small and large scal es of motion, it was concluded
that large—scale motion in a localized region , a “coherent structured ,
woul d resu l.t from nonhomogeneous mixing in a patch of secondary insta-
bility of the inflectional type. In addition to waves of scales typical
of the oimension of the patch, the large-scale eddy produced by the
mi xi ng wi l l also contai n a convected portion whi ch wi ll move downstream
with the local mean velocity . The shearing of the convected eddy was
found to lead to the formation of a new thin shear layer further down-
stream (Lan dahl , 1975), thus giving rise to a new inflectionally un-
stable region downstream of the original burst, and thereby making
burst regeneration possible.

In the present paper a more detailed analysis of the dynamics of a large-
scale coherent structure formed by the action of l ocalized mixing is
given . The approach taken is to treat the flow as an initial value
problem with initia l conditions provided by the large-scale momentum
transfer caused by the mixing due to secondary instability . Since the •processes i nvol ved are primar i ly inertial , viscosity is neglected.
On the assumption that strong nonlinearity is primaril y confi ned to the
initial time period during the secondary instability phase, the evolu-
tion of each coherent structure could be analyzed separately, independ-
ently of other large-scale motion and statistica l superposition used to
model the random fluctuati ng flow field, if so desired.

2. FORMULATION OF THE MODEL 
________

The theoretical model will be formulated on basis of the two-scale model
proposed by Landahl (1973). The fundamental ideas underlying this model
and some of the conclusions wh i ch can be drawn from it have been discus—
sed earl ier (Landahl, 1975, 1977). Here we shall only give a brief review _____
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~of its main features and draw some conclus ions from it ‘egar di ng the
overall characteristics of the initial large-scale velocity field.

To understand the characteristics of the initial large-scale velocity
field we must first discuss the behavior of the small-scale motion .
The secondary instability giving rise to the small-scale mo~ion is as-
sumed to be of the Kelvin-He lmholtz type arising locally on a thin in-
ternal shear formed in the flow. The secondary instability , and hence
the small—scale turbulence production , draws its energy from the velo—
city difference across the shear layer, and the resulting mixing will
be such as to tend to remove the velocity difference (Landahi, 1975),
The instability , and hence the turbulence production , will therefore
eventually be quenched when the small-scale mixing has removed the lo-
cal inflection in the large-scale velocity distribution . After an m i -
tial period of growth , the small-scale motion will therefore begin to
decay slowly due to viscous dissipation . After the completion of the
initi al nonl inear growth phase , the motion w i ll thus cons ist of a
large-scale field on which is superimposed a slowly decaying small-
scale velocity field , and the interaction between the large an small
scales then becomes weak. The subsequent evolution of the large-scale
velocity field may therefore be analyzed with the effects of the small—
scale motion neglected. Furthermore , since the mechanisms involved are
primari ly inertial, the effects of viscosity may be omitted , at least
during a moderate time period after the creation of the coherent
structure. Since observed typica l dimensions of the large-scale eddies
are of the order the boundary layer thickness, the downstream rate of
change of the mean properties of the boundary l ayer may be neglected
in the analysis and therefore the parallel—flow assumption adopted for
the mean flow. With disturbance velocities u. (u 1 = U, u~, = v, u.~ = w)~pressure p and mean velocity U(y) the equations of motibn may thus be
written

D(u 1 + 
~im U(y )) 

= - 1Dt ax~ 
( )

0 (2)

The boundary cond iti ons are that the component u2 = v is zero at the
wall (y = 0) and that the aisturbances vanish at large distances. The
region occupied by the disturbance shall be assumed to be localized
and have a typical horizontal dimension of 9., whi ch w i ll be assumed
to be large compared to the thickness ~ of the wall layer. Since the
mean shear outs id e the wall and buffer regi ons i s quite small compared
to what it is inside this region , one may treat the mean flow in the
wall layer as a separate boundary layer having a free-stream velocity
equal to the value at the edge of the wall layer which may be taken
to be located at approximately y+ = 50.

3

1k _______________



Consider now the effect of a small-scale secondary instability occur-
ing over a patch of typical horizontal dimension 2. and confined wi th-
in the wall region (see Fig. 1).
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Figure 1. Two-scale model (conceptual) for initiation of
coherent structure.

By integration of (1) and (2) over planes x2 = y = const. the fol-
low ing rela tions may be shown to hold:

ffvdxdz = 0 (3)

t
ffxvdxdz = - fdtffuvdxdz (4)
-

~~~ t. -

~~~i

ffxpwdxdz 
-p .fdyffuvdxdz (5)

where t. is the time of initiation of the disturbance and p the
wall pr~ssure. In deriving these it has been assumed that t~e dis-turbances drop off wi th distance from the center of the patch fast
enough to make boundary terms vanish. A l ocalized event producing
Reynolds stresses of the usual sign (<uv><0) will thus impart a mo-
ment of momentum to the flow , through the action of the surfacd
pressure, so as to give it a forward rotation in a sense opposite
to the mean shear (Landahl , 1975 , 1977). Large instantaneous Rey-
nolds stresses are produced only as long as the small-scale instabi-
l ity persists; thus the right-hand side of (4) will receive its ma—
jor contribution during the secondary growth stage, and the non-
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l i near effects from the small-scale motion will ~ small thereafter.
Therefore, the subsequent evolution of the large-scale glow may be
treated i ndependently from the small-scale motion, and each coherent
structure analyzed separately.

3. EVOLUTION OF THE COHERENT STRUCTURE

Following the discussions in the previous section we shall analyze
the large—scale motion as an initial value problem wi th initial condi-
tions u0, v0, w~ specified at t = 0 and selected so as to be commen-
sura te w ith the properties of t~e secondary instability . Thus

ffxv0dxdz > 0

Also the initial u —distribution should be such that the streamwise ve-
loc ity (U + u0) is°free from reflections.(For simplicit y , u0 w i ll be
taken to be zero in the numerical example to be treated below). A for-
mal solution of the system (1), (2) is most easily constructed on basis
of material (“Lagrangian ”) coord inates

= ~~~~~
defining the position of each fluid element at t = 0 (see Fig. 1). From
the first and third of (1) it follows that

u + U = u0(~,n,~ ) + U(~) - 1 fp~Dt~ (6)

w = ~~~~~~~~~ 
- — fp~

Dti (7)

where f .Z. 0t1 ,denotes integration followi ng a fluid element, i.e.,
holding ~1 constant. The laboratory (“Eulerian ”) coordinates are then
determined from

l~~x = ~ + (U + u0)t — — f(t_t1 )p~Dtj (8)p
0

z ~ + w0t - 11 (t - t1 )p
~
Dti (9)

~1~
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The pressure is found by integration of the second momentum equation
along x, z = const.,

~~Dv• p = p ,~~~~dy

The second velocity component, finally, is found from the requirement
that continuity must be satisfied . The transformation of a volume ele-
ment from laboratory to material coordinates is given by

dxdydz = Jd~drid~ (11.)

where J is the Jacobi an
x .

J = det (.~~!~)

For a fluid of constant density we must have that

J = l  (12)
(Lamb, 1932, section 15). Hence, upon expansion of (12) it follows
that

A1y~ + A2y + A3yc 
= 1 (13)

where
A = x z  - z x  (14a)
1 c n  c n  dy~~~

A2 
= X E;Z c 

- X c Z
~ ~~ 

(l4b )

A3 = x z ~ - x~z~ (
~
) (14c)

The identities expressed in the last column of (14) are found by
di rect calculation setting dx = dz = 0 and making use of (13). One
may easily solve (13) by the method of characteristics , or equiva-
lently, by direct integration of (14 b), which gives

fl dr~
~~~~

= I A 
(15)

o

where the boundary condition that y = 0 for n = 0 has been taken
into account. By substituting (8) and (9) into (14 b) we find

/



A2 = (1 + tu0~ 
- Il )(l + tw - 13~~ 

(16)

— (tu0~ - Ilc )(two~ 
— I3~)

where

l t
= 
~ I (t - t1 )p~

Dt1 
(17)

and

1
3 

= i f (t - t1 )p~
Dt1 (18)

It is convenient to define the quantity
11 1-A2 d~1 (19)
0

wh ich gives the displacemen t of the fluid element in the direction
normal to the wall , the quantity of primary interest in Prandtl ’s
(1925) mixing- length theory. From this, the y-component of the per-
turbation velocity may be directly obtained

v = ~~ !!! (20)

and then the pressure from (10).

The formal solution given by (6) — (10) and (16) - (20) is exact
within the framework of inviscid theory but can only be evaluated by
an iterative procedure. Fortunately, the problem cons idered allows
one to introduce some simplifying assumptions which make the evalua—
tion much more tractable. The assumption of a large horizontal scale
compared to the thickness of the wall layer allows one to neglect
the pressure variation through the boundary layer (the usual boundary
layer assumption) so that one may set

p p6 = p dy (21)
6

throughout the layer, where p~ is the pressure at the edge of theboundary layer. The flow outside the layer may be taken to be irratio-
nal , provided the initial disturbance is such that fluid elements ori-
ginating inside the shear layer do not penetrate outside y = 6. From
the equations for an i rrationa l flow one finds that

2



(22)

where U~, is the velocity outside y = 6, 4) the velocity potential , and
subscript 6 denotes values at y = 5. The velocity potential may be cal-
culated in terms of v6 from the integra l

v (x : ,z ,t)dx dz
~~ l 1 

(23)
V (x-x 1) +(z-z1)

’

Taking 2./Ui,, to be a typical time scale of evolution for the large-
sca1e motion one may estimate the pressure to be of order (for times
wh ich are not large compared to

= O(U~,v~) (24)

where v~ is a measure of the ampl i tude of the initial motion . Using
this, ov~e finds that the pressure integrals 1

~ 
and 13 are of the order

1 1 ,3 = 0 [t
2U~v~/L] (25)

and their contribution to the integrand in (19) of order (taking only
the linear terms )

• t2U,,,v~/L
2 

(26)

This will be negligible compared to the linear term

- t(u0~ + w0ç) = t

which i s of order t v~/~s , whenever
t U0JL << 2.16 (27)

Hence, for S/t<<l the effects of pressure may be neglec ted for times
which are not large compared to the time needed for the disturbance
to be convected downstream a distance equal to its own len9th .

In the analysis which follows the perturbations are assumed to
be small so that terms i nvolving products of the initial velocity
components may be neglected in the solution (19). From (16) it follows
that this is permissible provided



v~t << 6 (28)

For times of order 6/v~, and larger , nonl inear self di stort ion effects
may become important. Only for very weak disturbances such that

v~/U~, << (6/L)
2 (29)

will the nonlinear effects be small compared to those of the pressure.
If (29) is not satisfied , the solution may be obtained by iteration on
the pressure as follows . Fi rs t, the solution (19) is calculated by neg-
lec ti ng I, and 13 in (16), Second , the pressure is obta i ned from (22)
and (23), I~ and 13 are computed , and then an improved value of 9.m de-
termined , etc. It is difficult to assess the convergence properties of
such a method , however. Poss ib ly, a step-by—step procedure in time in
which after each time step a new initial velocity field is calculated
could be used to study the flow behavior for large times.

To investigate the qualitative effects of pressure for large times,
we have here instead made use of the linearized solution . Neglecting
all terms which are quadratic in the initial velocity components we
find from (10) - (19)

= t v0 (~1,~1,Z)d~1 
- 

~ 4 ~ dy f (t-t 1 )p(~ 1,t1,z)dt1 (30)

+

where

4 ~
2h~

2 
+

and

= x — U(n 1)(t-t 1) (t 1 = 0 in the first term)

Here, use has been made of continui ty of the initial veloc ity f iel d
and the approximations

x ~ + U(y)t y n , z (31)

The f i rst term, 9$~)jn (30) may be regarded as the purely convectedsolu tion. The second term, t~2. , gives the lowest-order correction
due to the pressure. The pressure is now approximated by

11



v d x dz6 1 1  
2’ 

(32)
V (x—x 1) ÷ (z—z1)

and the perturbat ion veloc ity components by

u — u0(~ ,y,z) - 2.~U ’ (Y) ~ ~ Px
Dti 

(33)

~~.~
.(L + u  ~—~~~2. (34)

~~at ~~axj m

w w0 - ~ 
f p

~ 
ot1 

(35)

4. LARGE-TIME BEHAVIOR

We shall now consider the large-time behavior of the solution
(1 9) under certain simplifying assumptions. It follows that for mo-
derately large times such that (27) and (28) are satisfied both the

• pressure and nonlinear terms may be neglected in (19) so that the
fluid element vertical displacement may be approximated by the line-
ar ized express ion

= t I v 0 (~1,ri1;z)dn 1 (36)

where

= x — U(n 1)t

By change of integration variable to this may be written

= f ~~ V0~ (~1,n1 ;z) d~1 (37)

where ~ = x - U(y)t and where U~ is given by

/0



U1 u (
~~

) = (x - E 1)/t (38)

Consider now x/b’>l and large times (but wi thin the limits set by (27)
and (28)). Since sizeable contributions to the integral (37) come only
for regions = O(x/&) , one may set

~ x/t (39)

and r~ may thus be replaced by a constant in (37) giving

~ j v0 (~1 ;n 1 ;z)dn 1 (40)

where we have rep laced the upper limit by infinity since v0 approach-
es zero for x/9..>>l . The solution for will have the charaeter illust-
rated in Fig. 2.

(a) (b)

i. I

0~ ~

•••—

“1~~~~~

F igure 2. The flu id elemen t d i splacemen t, £~ 
, in the

direction normal to the wall for large times (conceptual).
a) as function of ~ = x - U (y)t
b) as function of y. li1 U (r,1) 

= x/t.

For large negative ~ (correspond ing to large y) the range of
i ntegration wi ll inclu de the whole streamwi se range of nonzero
values .of v0, so that 2.~ tends to a limiting nonzero value (pro-
vided lvd~ ~ 0 ) above y = . ~or large positive ~, on the otherhand , ~~orrespond i ng to small y) the lower lim it wi ll tend to +~
and the integral , and hence 2.m’ will become zero. The fluid element
displacement will hence vary rapidly, when tU’>>l , in a region
around y = r~ with a thickness of order 2./U’t. Since , when thepressure terr~ is neglected in (33)

II
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u u0(~ ,y,z) 
— 2•mU (s,) 

(41)

it follows that a thin shear layer , of thickness = 2./U’t, decreasing
as the inverse of time ,w ill form. It also follows from the second term
of (41) that the streaniwise velocity will show a strong y-coherence
for y >r~ . Such coherence has been observed in the experiments by
Bl ackwelder & Kaplan (1976).

For the ~onlinear case one must include the possibility that A
could become zero in some point for large times such that v~/6 = 0 ~5).
The conditions under which this may arise have not been investigated ,
however.

The l ong-time effects of pressure may be studied on basis of the
lineari zed equations (30) - (35). Application of Fourier transform in
x, z and t to (30), (32) and (34), wi th

= j 7j e 1
~~~ 

+ ~z - wt)2.mdxdzdt (42)

gives

= 

y v0~(n 1 )dn 1 
- 

2 
~ 
y d~1 

2 ~~~~ ~ m (43)
m 

0 [ic&(U1-c)J 
p 0 ( ia(V 1—C ) 1

l 2 2A
(44)

In these, caret denotes triple Fourier transform as in (42), ti l de a
transform with respect to x and z, only, e.g.

= 17 ~~~~~ + ~z)v dxdz (45)

and

U1 = U(n1)

C =

k =h2 +~
2

,i-
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The behav ior of the solution for 6/2.<<l is obtained from the
transformed solution for small va lues of c~ and ~3 . Simi arly, the
large-time behavior may be determined from the transform for small c.
From the solutions for tm and p the velocity components may be found
from (33) - (35), so only these quantitatives will be considered.

Comb ination of (43) and (44) gives

~(l)
A - m6
‘m6 — (46)

1 + k(U - c)2 f (U 1 
- c~~

2dn1

Hence ,

- c) 2d~
= — k(U_ — 

~~~~~~ °m ‘ m6 6 (47)
I + k(IJ - c) ~ (U 1 - c~~

2dn1

where

= I fi~(U 1 - c)J -2 
~ (~~)dn 1 (48)

Expansion of the denominator in (46), (57) for small c and k yields

1 + k (U~ - c)
2 f (U1 - c) 2dn 1 1 - (49)

k(U_ - c) U k (U_ - c)2 / U_ -
- ~~- — U ’’ ln ( ~cU ~ U~

3 C 
~ - c

Index c denotes values at n = ri , where ri is defi ned by U(ri
~) 

= C.
That branch of the logarithm inCthe secon~ term wh ich is obtained by
going below the integral must be chosen. This follows from the treat—
merit of the problem as an initial-va l ue one; convergence of the Fourier
time integral then requires that ac has a positive imaginary part.
(Th is difficulty is familiar in the theory of hydrodynamic instability
for an invisc id flow, see Lin, 1955). For small k it is found that

k3



(49) has a zero for c = c0, where
.~~~~~ ,,

q 
‘2 + 0(k2) (50)

1 + q (1 - U~jJ~ (rfi — lnq)/U~ ]

k UQ~/U~ + 111k U~ U~’/U~
4 
+ 0(k2) (C0,. + Ic01 )/LJ0,

where q = k tJJU~,iThis gives the eigenvalue for an infinite wave train of
(a small) wave nu mber k in an inviscid parallel shear flow . (The approx-
imation underlying (50) is the same as the one employed in the early ana-
lytical approaches to hydrodynamic stability theory. In fact the integral
in (49) is identical to the integral K, in Link 1955 , p. 44). For
U’’> 0, whi ch w i ll occur when the velo~ity prof i le has an inflection po int
sSmewhere, the imaginary part of c0 is positive and the waves will grow,
i.e. the flow is unstable to small disturbances. The mean velocity pro-
file of interest here has U’’<O everywhere, hence the flow i s stable in
the hydrodynamic sense. From (50) it follows that

C0 i/C 11 k U2 u
~~i

’U
~
3 

(51)

which is of order 6/2. for k = 0(19.) and thus small under the assumptions
of the present theory.

For the study of the long-time behavior of a disturbance of large
horizontal scale we need only retain the lowest-order terms in k and c,
provided all poles in the transform are properly represented . By approx-
imating the integrals in (47) and (48) through expansion of the inte—
grand about the point 

~ 
in the same manner as that employed in (49) and

retaining only poles, but not logarithmic terms in c and U-c (which give
rise to contributions varying as inverse powers of t), we obta in

~ 
v0~(n~) U

2 ‘ (52)
a U~ ( c — c 0)(U - c)

But from (43) we find in the same manner

~(1) ~~~~f l C . 
c(U - c) (53)

C

• Hence, we may set , wi thin the same approximation ,

• tin ~ c 
C - 

(54)
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After i nversion , the results may be cas t in form of the following
convolut ion integral :

2 t
• ~ 

= 

~~~ 
f cit1 ff ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (55)

where G i s the inverse transform of

G _  
2

1 
(56)

a (c - c 0)

An asyiiIptotic analysis for x, t-~co under the assum pti on that C01< 0
for all non-zero wave numbers , but that ic 0j I/c0~ << 1 (which is
consistent with the assumption 6/2.<< , see (54) , gives the follow ing
s imple app rox imate result:

r X Z U ’ 
~

G = -i—- sin C j H( tU_ - x) (57)lIZ 1U~( tU~ - x) =

Here , H(x) is the Heaviside step function and LI’ =iJ ’(y~) is defined by
(c.f. (39)) C

U U(y
~

) = x/t (58)

In deriving (57), use has been made of (the first of) (50) with the
imagi nary part neglected , i.e. taking

c0/U~, q/(l + q) (59)

It follows from (55), (57) that the effects of the pressure causes
the leading edge of the disturbance to propagate wi th the free-stream
velocity U~, . This is in accordance wi th the finding by Gustavsson
(1 978), in which it is shown that the continuous spectrum of the solu-
tion for a disturbance initiated in a boundary layer gives rise to a
portion propagating with the free-stream velocity , both in the viscous
and in the inviscid cases. It can al3o be shown from (55), (57) that

tends to zero as t 2  or faster as t~~ for fixed x, in accordancewith the result of Gustavsson (1978).

Of possible significance is also that (57) shows a definite span—

I)
.—.-
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wise periodicity witl1 a wave length increasing with time . This will
also cause a cut-off for the larger spanwise scales , so that they
tend to propagate with a lower velocity (tUc~-x larger) than those withsmall spanwise scales. That the highest propagation velocities are
atta i ned by the disturbances of the smallest spanwise scales is a
consequence of the form of the approximate dispersion relation (50).
Thi s was der i ved under the assum pti on of a large hor i zontal scale , so
that the propagation velocities near U,,, pred icted for the small scales
are not correctly given by this theory.

An interesting limit is that for t-*~o with x/t = U, hel d fixed .
The argument of the sine in (57) then tends to a fixed value , and one
can show that 2.m approaches a nonvan i shi ng value for t-oo, provided
U(y)<U~<LL. Hence, the streamwise dimension of the disturbed regionwill grow as t(U~ - U(y)). Since the largest differences between thefree tream velocity and the local mean velocity U(y) are found near
the wall , one would thus expect the most highly elongated disturbances
to appear there. This may provide a possible explanation for the
streaky structure observe d to occur in the turbulent boundary layer
in the region close to the wall. However, i n a real v i scous flow the
pressure cannot g i ve ri se to nondecaying di sturbances , unless neutrally
stable or growing waves ~ ~ present because of instability . In the in—v i sc id case , waves of a-~ - will always be nondecaying , even if the flow
is hydrodynamically stab’e, and they provide the main contributions to
the nondecaying disturbances in the limit of t-*co. In the v i scous case ,
the waves with a÷O will be decaying , and the disturbed region will
therefore not continue to grow forever , butd ecay w i ll set i n at some
finite value of streamwise to spanwise wave length .

It is of interest to estimate the time required for viscous
effects to become important. By compari ng the rate at which viscosity
diffuses the internal shear layer with the rate at which it is being
thinned by stretching of spanwise mean vorticity , Landahl (1977)
arrived at the followi ng estimate of the time t, at which viscous
diffusion and stretching balance:

tv (2.2/vU 2)~
’3 

(60)

In terms of wall variables , taking for U’ the value at the wall one
finds

t (1
f
)~~~~

which shows that v i scous effects are likely to become important before
the disturbance has travelled a distance downstream many times its own
streamwise length . The time required for viscous diffusion from the
wall to be felt in the flow is given by

_ Y
2
/v

which in terms of wall variables gives

t+ +2
vw
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which appears to give a somewhat less severe restriction , excep t in
the immediate neighborhood of the wall (y~ < 5, say).

5. NUMERICAL EXAMPLE

A numerical example will be used to illustrate the application of the
simplified model and a comparison made wfth experimental data . From
(3) it follows that the initial v-distribution must be such that the
net vertical flow across a plane y = const. must be zero. According tc1
(4) the moment of v0 with respect to the z-axis should on the averagebe positive , since <uv> is negative , typical v0-distribut ion will
thus have values that are pos iti ve downs tream and negative upstream of
the center of the disturbance . Also , si nce the Reynolds stresses drop
to zero for y = 0 and for y = 5, the initial v-distribution must be
zero in these limit s and have a max imum near the pos iti on of max imum
turbulence production . For the calculations presented here, the follow-
ing v0-d istributi on which satisfied these conditions was chosen

= Co (L1~ 
~
L2) exp [~ ~~~~ - ~~~~2 

1 
(61)

In thi s , 9.~ and 4 are scaling factors to be suitably selected . The plus
superscri pt is used to indicate that viscous wall variables will be used
in the presentation of the results. Fig. 3 shows numerical values for

= v~ e
3’2 , ~ 50 and 4 = 16

3~ T~~ ~~~r— I

~~~~~~—~~L_~~~~-y.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
v
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• 
0

Figure 3. Initial condition used in numerical example u0 = 0,
V0 from (61). 
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Th i s v9—distributio n has a maximum at y
f 

= 16 and an overall streamwise
dimension of approximately 200 ‘in wall units , val ues which are not in-
consistent with experimental data. The value of C0 was selec ted to make
the max imum of v0 equal to unity (i.e. equal to the wall friction velo-
city in dimensional form). At y~ = 40, v0 is about 0.03 and hence of
negligible magnitude above this y+-value . The character of the solution
depends primarily on the scaling factor 9.+; by a simp le li near rescal ing
the results for a given parameter conibina~ion may be applied to any otherdesi red combination of C and 2.~. For a representation of the mean velo-city distribution the siM p le ex~onential approximation proposed by
Schubert & Corcos (1965)

= 16 (1 - e Y~1’16) (62)

was found to give adequate accuracy for the present purpose.

Flu id element displacements 2~ , and from this the u-perturbations ,were calcul ated wi th pressure effects ignored . Sample results are shown
in Fig. 4 and 5. At fi rst, the streamwise velocity perturbation grows
rapidly, and the flow pattern is stretched out in the streamwise di rec-
tion. A shear layer is seen to form and intensify as it is convected
downstream. For t~ = 5 it is just beginning to appear between about
x4 = -50 and x~ = 0, and for t~ = 15 it is most intense at around
x~ 50.

40

• 

_  _  _ _

Figure 4. Distribution of streamwise veloci ty perturbation u
at t~ = 5 for model example. Dotted line÷gives position of
fluid elements originally located along y = 50.
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Figure 5. Distribution of streamw i se veloc i ty perturbation
at t~ = 15 . Dotted line gives position of fluid elements
originally located along y~ = 50 .

The displacement of the outer edge of the wall layer (taken to
be located at y~ = 50) is also indicated in both figures . For t~ = 15
the displacement has become so large that the validity of the linear-
ized theory may be seriously in doubt for this choice of initital velo-
city amplitudes. Nevertheless , the charac ter i sti c features shown by
the theory such as the appearance of a bulge next to a depression
further downstream are likely to be correctly represented . The depres-
s ion and bulge will be convected downstream with a velocity less than
U,,, and the fluid riding over the outer edge of the wall layer will
induce a pressure pattern which could be expected to consist of an
overpressure in the region below the depression and an underpressure
below the bulge. This pattern will then disperse as waves.

Perhaps the most revealing way to present the results is to show
how the perturbation velocity distribution at a given downstream loca—
tion varies wi th time . This would be what would be seen in experiments
such as those of Blackwelder & Kaplan (1976) in which instantaneous
veloci ty distributions were measured by -a hot-wire rake. The variable-
interval time-averaging (VITA ) detection and sampling method employed
by them could be expected to pick out structures which have formed just
upstream of the measurement station. Accordingly, the station x~ = 50,
a position about -half-way downstream of the center of the initial dis-
turbance , was chosen as one which might correspond qualitatively to the
experimental situation . In Fig. 6 are shown the streamwise perturbation
velocities as function of y+ at various nondiniensiona l time t~ af ter
the initiation of the disturbance. One sees first a velocity defect ex-
tending throughout the whole layer. This arises because the station con-
sidered is first affected by fluid elements which have been lifted up
by the initial v0-cjjstribution . At t~ = 10 the regions further out from
the wall have begun to receive fluid elements travelling towards the

/9
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wall , and an accelerated region begins to fill up the whole y+ -range.
The perturbation velocities then decay slowly to zero.

__

2I

~~~~~~~~~~~~~~
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~~~~~~~~~

=10 15 20 =40

Figure 6. Streamwise perturbation velocity profile for
x~ = 50 at various instances of time.

The model calculations may be compared to the conditionally samp-
led perturbation velocities obtained by Blackvelder & Kaplan (1972)
using their VITA procedure. These are reproduced in Fig. 7. As seen, the
results obtained from the theoretical model are remarkably similar to
the experimental ones. The most characteristic features of the mea-
sured data, which are correctly represented by the theory , is the
strong shear layer, which appears to propagate towards the wall , and
the very rapid acceleration associated wi th the passage of the shear
layer. The experiments also show the predicted slow deceleration back
to the undisturbed mean flow. The main qualitative difference is the
observed excess velocity in the outer layer for early times which is
not included in the simplified model. This velocity excess is probably
a manifestation of the wallward motion (the sweep) which has been ob-
served to precede the bursting (Corino & Brodkey, 1969 Offen & Kl ine,
1974) and which appears to be essential for the initiation of the
lift-up and subsequent break-up of the flow in the wall region. This
sweep is believed to originate in a previous burst further upstream.
Since it was assumed for the initial conditions that u0 = 0, the cal—

• cula ted results will show small streamwise perturbations in the outer
region for small times.
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Figure 7. Conditionall y (VITA) averaged u-perturbation
velocity profiles with positive and negative time delay r
relative to the time of detection obtained in experiments
by Blackwelder & Kaplan (29].

The sign predicted by the present theory for the perturbation
veloc ity in the outer region caused by an earl ier upstream burst may
be determined from the approximate asymptotic solution (40). For values
of y greater than the value Yivn i ma~e 

for wh ich V0 has its largest
• magnitude , v0~ is negative fo~ tI~e downstream reg ion in ~ and positive

for the upstream region . Therefore, the integral in (40) will be nega-
tive, and the fluid elements therefore tend to be displaced towards the
wall in this region (see Fig. 8), i.e. a velocity excess occurs. For

• the region closer to the wall, for y<y~~, 1 rn ~ 
the opposite situation

prevails. Thus, a velocity excess tends ~ó ~evelop i n the outer region
for large times , and this may travel downstream to interact wi th a new
burst.

For large times the effects of pressure must be taken into account,
which may be accompl ished through application of (55). By substituting
into (57) the exponential approximatIon (62) for the velocity profile , G
becomes , expressed in wal l variables

F ~~~~~~
• 

•

- 1 ~~~
-A
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Figure 8. Typical streak lines . Upper curve , y greater than
value y , for which Iv I is maximum .,v01max o
Lower curve , y < y

1 v0 max

= 
__!_

~~ sin [ X Z  H (t~U~ - x~) (63)
nz U t ó

in which , in accordance with (62), U,~, = 16 and 6~ = 16. With x~/t~ = U~.this gives a spanwise wave length of C

= 2rTo’ U~ /U~ ~ 
100 U~ /U~ (64)

Since initial disturbances of finite spanwise scales always give rise
to propagation velocities less than the free-stream velocity , this ex-
pression gives a somewhat larger spanwise streak spacing than the
accepted experimental value of 4 100 (see Gupta et al., 1971). How-
ever , for such a small scale the basic assumption of the theory, namely
that the horizontal scale is large compared to the thickness of the wall
layer, i s of questionable validity . Even more serious is the neglect
of viscosity for this case, since it is likely to have a considerable
effect on the dispersion characteristics of the pressure waves. There-
fore, the fairly good quantitative agreement between theory and expe-
riments in this case is probably fortuitous.

— 6. CONCLUSIONS

The simple theoretical model presented here is based on the assump-
• tion that the interaction mechanism responsible for the generation of

turbulent fluctuations is basically inviscid and i nvolves the inter-
action of eddy motion of two disparate length scales , a large-scale one,
typically of a dimension of the order of the boundary layer thickness,
and a small-scale one, of a dimension smaller than the thickness of the
wall layer. The large-scale eddy is set into motion by the action of
the nonuniform Reynolds stresses produced by inflectional instability

LL~ ~~~~~~~~~
• •

~~~~~~~~~~
•
~~~~~~~~~~~~~~~~~~ 



of a thin internal shear layer. The turbulent mixing due to this insta-
bility can be shown to induce a slow forward rotation of the large-scale
flow , in a sense opposite to the mean shear. That bursting regions in-
deed show such a rotation has recently been found in pipe-flow experi-
ments by Sabot & Comte-Bellot (1976).

Under the assumption that the horizontal dimensions of the large—
scale field are large compared to the thicknes s of the wall layer it can
be shown that the effects of pressure and of nonl i nearity on the evolu-
tion of the large-scale eddy may be neglected during short and moderate
times after its initiation. By use of a Lagrangian analysis a simp le

H formula for the displacement of the fluid element in the direction nor-
ma) to the wall could then be derived . From this, one may then easily
calculate the streamwise perturbation velocity in the spirit of
PrandtYs mixing-length theory.

From the approx imate theory one can demonstrate that a local ized
disturbance tends to develop into a thin shear layer during its down-
stream travel . A numerical example presented to illustrate the theory
shows clearly this tendency and also gives qualitative agreement with
conditional ly averaged data obtained in the experiments by Blackwelder &
Kaplan (1972). For large times after the intitiation of the disturbance ,
measured in terms of the time it requires to be convected downstream a
distance equal to its own l ength , nonl inearity , pressure , and viscosity
may all become important. Nonlinear effects may be handled fairly easily
by the theory for cases for which the pressure gradient effects are
small.

The effects of pressure, which provide the most intricate part of
the analysis, were studied on~basis of the linearized equations. It wasfound that for large times the pressure waves will give rise to an elon-
gated pattern whose streamw i se length w i ll ontinue to grow as the long
waves become more and more dominant. The flow will thus become increas-
ingly two—dimensional in planes normal to the x-axis within this pattern .
From (30) it therefore follows that the pressure effect will depend pri—
man ly on At a spanwise pressure maximum , Pzz w ill be nega tive ,
and the contribution to 2.~ w ill be negati ve , i.e., the flow will be
speeded up. The opposite will be true for a pressure minimum . Since a
region of Pzz < 0 must always have neighboring spanwise regions of
Pzz > 0, a high-speed streak could be expected to be located between
two l ow-speed streaks. That l ow-speed streaks tend to occur in pairs is
consistent wi th observations of the streaky structure in the viscous

• sublayer (see Gupta et al., 1971). The present theory also gives an
estimate of the spacing between longitudinal streaks in terms of the
wave propagation characteristics for waves of large streamwise wave
lengths.

It has been proposed by Offen & Kline (1975) and others that the
inflectional region preceding breakdown is caused by a large-scale tra-
ve iling pressure d isturbance , or iginating in the outer port ions of the
boundary layer, which will retard the fluid elements near the wall
through the action of a local adverse pressure gradient. Measurements
reported by Willmarth (1975) show that intermittent Reynolds stress pro-

hL~± 
_ __ __ __ __ _ _



duction is associated with the passage of a large-scale pressure minimum
which would indicate that the fluid near the wall , hav i ng a veloc i ty

• less than the convection veloc i ty of the pressure , had been subjected to
retardation by a positive pressure gradient just before bursting . An

- 
• estimate on basis of the present inviscid theory gives , in contras t,

that this effect tends asymptotically to zero as the time of travel of
the disturbance tends to infinity . The result of the present theory that
a large l ift-up would occur at a spanwise minimum of the pressure is not
inconsistent wi th the experimenta l findin~s, however.

Simple estimates show that viscosity is likely to become important
at about the same time pressure effects begin to be felt. From compari-
Sons between the viscous and invisc id stability analysis , it could be
expected that the propagation characteristics of the waves induced
during the large-scale motion will be changed considerably by viscosity .
An initial -value analysis similar to the one carried out here but with
viscosity taken into account would therefore be desirable. Some initial
efforts in this direction have been made by Gustavsson (1978) but the
analys i s becomes cons idera bly more comp lica ted than the one presented
here and the results much more difficult to interpret.
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